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ABSTRACT

The familiar system of equations for the mixing of two friction-
less incompressible substances in one dimension is discussed. While
it is known that external forces are necessary to initiate such mixiné,
the equations themselves admit solutions in the absence of such forces.
By means of a contact transformation on the variables involved, the
general solution of the system under this assumption is determined,
and a large subclass discussed in considerable detail. All of these
are found to be stable in the sense that the width of the zone in
which appreciable mixing occurs tends co zero as time increases. For
some such solutions, however, the surface between the two materials
actually reestablishes itself, with a portion of one material being
detached from its parent substance and sifting into the other. These,
therefore, must be regarded as unstable for reasons which lie outside

the one~dimensional theory.



MIXING OF FRICTIONLESS, INCOMPRESSIBIE SUBSTANCES, I
1. We assume that in a rectilinear cylinder of infinite cross-
section, the region x ¢ xo(t) ["t" denotes time ] is occupied by an
incompressible fluid S with density unity, veloeity u(x,t), the
region x %.xl(t) [:xl > X, ] by a second incompressible fluid 82 with

density @B, velocity v(x,t). In the region X, < X <X, the substances

l’
are assumed to exist in a mixed state, with X(x,t) denoting the
proportion of Sl at position x at time t. If the pressure on both
substances be taken the same, and frictional forces may be neglected,

the equations governing the motion in the region X, £ x 8 x, are

au o au _afev . av

ﬁ + us-i = P 3t + V0x ’ (l)
as , alow) 0 2)
ot Y =0 (

2w , ol1-x) v) v) _ . (3)

e

The equations (2), (3) added yield the first integral
au + (1-%) v = F(t). (¥)

For « = 1, this reduces to u = F(t), so the motion of S, defines F(t).

1
Evidently, also, by definition of the points x = xb(t), X = xl(t),

we have the following boundary conditions:




At x=1, dx=v dt, (5)

and

at « = 0, dx = u dt. (6)

The above system has been studied by various people, and in
particular, under the assumption F(t) = t, a one parameter family of
solutions of similarity type have been found by Rosenbluth. We wish

here to consider the system with F(t) = const.

2. Before specializing in this manner, we first observe that
ft
the transformation x - j; F(t) &t — x, u - F(t) — u,

v - F(t) — v has the following effects: equation (1) becomes

s (v ) (g1 (1)

equation (2) is unaffected,

dan) - o (2)

an
at + X

and equation (%) becomes

xu + (1L -&) v = O. (8)

The boundary conditions (5), (6) are unaffected.

Now let

v o= &Xu,

e




so that, by (8),

w - W

u o= g, Vo= T—x (9)

then (2) and (7) become

9x , VW _
2t + 532 =0
1 A\ ow 1 p X

vl [ o _ - '
(od+ (1-0&)3)"’x (f-1)F y

Our next step is to take &, w, instead of X, t as independent

variables. Setting

X 9t _ ax ot

= 3% 5v " 5w 9%’ (1)
we have
ox _ g1 8% ov _ _ slot
X J ew’ 2x -
. > (12)
da _ _y-lox aw _ gl 9x
ot =9 v 3t~ 9 M|
J

Thus (10) becomes

éa_"}s"*-g%;:o: (13)

and




2
f) ZErawer @ -L e = (g1, (14)

where
fx) = & + L= (15)

Next, we note that (13) permits the introduction of y(X, w) with

X = ¥x > t = -¥y (16)

and that (14) then becomes

2
T Y = 2 W I! Yoow * %? £ Vw =
(17)
= (A1) Gy )L, = Yo V)
where
a(-t) = F'(t). (18)

This is a second order equation of Monge-Ampere type; it is readily
found to be elliptic.

In connection with the change of varisble Jjust made, it is of
course to be remsrked that care must be exercised in interpreting
solutions of (17) as solutions of the original problem. This question
revolves around the behavior of the Jacobian (11), and since that
depends on the function F' or G, one cannot diécuss it except with
reference to a particular choice of G. For the case which we consider--

namely, G = O -- it will be considered later.

3. Our first step is to remove the cross-derivative term from

the equation; this we do by replacing w by the variable

-6-




A = v (X)) = u-(3v. (29)

We have
Yaw = 2A £ 22y 4 A% prr 73 Yy = 0,
Yk = Yax + 2 X £ £t Yaa +A2 g2 g2 Py + A £y,
g = AT F T N + £ W
Yo = £ Y22 -

Thus, we obtain

st (3E-25) (2 )x

or

*(1-(L + @-1) %) 3q + B(AZ ya)5 = O (20)

We now mske the further change of variable

%= GiyreErTs Y = @+ @EvNY, (21)

l-& = ((3-1)1(~l++(§r4)r T rfDx - (F-_l%réfﬁ_i (22)

It is then readily found that (20) becomes

(1 - %) Vrrﬁu(kaw,\)/\ = 0 (23)

=




In addition, we shall need

l- -hrz W?«

ot
|

(24)

2 2
l-r) - A(l+r
x = & ])- r2( ) )2}17\ - (- 1) r +/5+l)l})r+(ﬂ—l)7/
We have now to consider the boundary conditions in terms of our

. A
new varisbles. For r = const., we have

2 2
PR € ENCE) S

2 2
s [ BE Q) s (A1) - (1) £+ DY

l-r

At X=1, r = -1, u = 0, A= u-pBv = - fv, so

. 2 2
ax = v dt +r}iml[£l-ri _'rfz(l“r) Va + (B-1) Y -

- ((p-1) = +p+ 1) Y5 } aX

Except for t = oo, ‘% —» o for r —> -1, by (24), so we have

lim V4
A =
=~ | TP Var |0

Thus simply the existence and continuity of Y&r is sufficient for the
boundary condition to be satisfied.

Similarly, at r = +1, we have the condition




lim [ I-r VAr ]

r—>+1
which is satisfied under the same circumstarces.

We have of course to bear in mind that at r = + 1, Ya~1 ¥ r,
except for & A which corresponds to t = + e©. For t = O, of course,

VA vanishes to a higher order.

L. We return now to the question of the justifisbility of our

change of variable. To that end we compute 'g—éoi(l% , and find readily
)

X,t) o< (l-ox) A2 atj o5

This therefore never changes sign, vanishes if and only if

gv _ ot

t
il SR or 2 = = o,

X
for O £ X <1, and becomes infinite if and only if one or more of the

quantities

A, 2t at
> A’ B

become infinite. Thus any solution of (23) must be examined with
respect to these possibilities.

We further note that a solution of (23) to be physically satis-
factory must have the prdperty that it gives, for each fixed t, & and
A as single~valued functions of x, with X taking on values between 1
and O on an interval xo(t) < x < xl(t), and thus r taking on values

between -1 and 1 on that interval. Now, for t = const., we have




_ ox ax
dx = a—x' dx +a—x- d)
. Ot gp 40t
0 = v dow(” aa ,
and so
A2
AA
X = dx
x 3(x:t)
I XA
¢ (26)
- ot
ax = —9% ax.
X,t
alx, A ]
Thus &« will have extrema as a function of x only if gjt changes sign,
and A will have extrema only if go-t(' changes sign (so if and only if g—;

changes sign).

5. We now determine the general solution of the equation (23),
finding for it both a series, and an integral representation.

First we seek solutions of the form

Y, = z(r) p(N). (27)

Substituting (27) in (23), we obtain

(1 - r2) 2" + uz = O,

2 (28)
(A P') - A~z = o,
where /« is constant. Setting
z = (1- r2) P(r), (29)
we have
(-2 P - hrp v (@-2)p = o (30)

=]0-




With &« = (n+1)(n+2), (30) has as a solution & polynomial P,

of degree n for every integral n:

n n/2_or n"i{?k n(n-1) ... (n-2k+;)rrn'2k

T k=21' ( 2% x1(2041)(2n-1). . . (20-2k43)

[Note: the Pn are a special case of Jacobi polynomials. The latter
are defined as those functions Pn such that
1 « y, .
f (1-r)" (1+r) P P dr=0, n # m, oc,ﬂ> -1.
-1

In the case before us K = /7 = l. See Courant-Hilbert, I, pp.

76-71. |
It will be convenient to set
1 -1/2
q, = (fl a®)pla ) B, (31)
and
2
z = (1-r°) Q- (32)

Evidently then

1 -1 O, n # m
f (1-r2) 2z z_ dr = (33)

-1 nom l, n =m

The corresponding solutions of the second of the equations (28)

are readily seen to be

yn = xn+l or ¢n = 7\—!1-2. (3),;)

Thus the general solution of (23) may be written




() = > z(e)(a a™ ip A 0-2) (35)
p n n n

n=0

Consider, in particular, the solution
- ' n+l . -n-2
)ﬂn(r,h) zn(r)<a a X +D n)\ ).

For such a solution we have

ct
]

Ny Pn(r)<(n+l) a, A7 - (m2) b A "(m3) ) ,

b
n

((l-r)2 - (-"(l+r )2> Pn (na.n A n+l (n+3) bn A -(n+2))

-(l-r2) (/34- 1+ (p-1) r) Pn'(r)(a_n Y n+l b_ 2 -(n+2)> .

For n = O, this gives

ot
n

4@(2b A 34y,

3@(1—#{)2 - (l-r)2> b A _2,

b
n

or, with a convenient choice of constants

t = A3,
x = g((l+r)2 -/4-1 (l-r)2> A -z,
This yields

-12-




3 (-2 - P’ 2/3 ’
X § 5 t
(1 + (F-1)x)
a- gy = 3, ‘ (36)
xu+ (1-q) v = 0O,

-a solution of “similarity" type.
For n > O, on the other hand, none of the solutions Vn are
satisfactory. For every Pn has zeros interior to ~1 £ r < 1, and hence

at each such point, for t # O, either
A= 0 or A = + oo,

Hence, at such a point, since Pn'(r) 74 O, we have x = + oo-

6. We now obtain various integral representations of the

solution of (23). To that end we note first that it is known that

1
F(r:A) = 73

(1-2rA+ 7\2)’/‘(1-7&(1—2:'7%7\2 )'/ L4+A+(1~2rA+ A 2) )

is a generating function for the polynomials Pn(r) s more precisely

F(r,2) = 2(2(22+;)%n+2)>1 Pn(r) An'

n=o

(cf. Polya-Szegd, Aufgaben und Lehrsatze aus der Analysis, Vol. II,
p- 93).

The function F(r,A) may be simplified:

-13-




1
2(1-2rA + 7\2)?{ (l-r)\ + (1-2rA + A 2)%)

F(r,n)

o "2
(L-2r2+ A7) -14+71r
2 A2(1-r7)(1-2c + A5)~

Thus, if we set

2./
(1-2r2 +2%) - (1-rX) (37)
A(L-2rh + A2)% ’ >

G(r,2)

we have

1/2
2 1 1
G(r,A) = g(-(—%(—mmnza ) z (r)2 aid

so that G(r,)) is a solution of (23), as may be verified directly.

(38)

-

Now, observe also, that we may write

1 rA -1

2(1-r%) F(x,N) L

22 (1-2r) + la)%-

= 1/2
S(%-%’%ﬁ) 2,(F) A%,

n=0

and integrating, obtain

O
2
K(r,2) = 2((2n+d)1n+2)(n+17)
n=0

1/2

2, (r) A%, (39)

where

<1li-




1/2

2
(1-2rA +X7\ ) -1 r, (40)

K(r,2)

the constant of integration being determined by the condition that

K(r,0) = 0. Further, if we multiply (39) by X and differentiate, we
get
1/2
_ 2(n+2) n+l

where

A-r
H(r,) . +r. (42)
(1-2r2 +A2)*

We now base our further analysis on (1), (42), although one could
equally well use (37) or (40) instead of (42).
Purely formally, if one replaces A in (41) by A 'C_l, multiplies

by a(T) and integrates from O to oo with respect to A s one obtains

f [(’ca -ke;xf+12)y‘ + r] ale) at (43)

o

oD

n+l
2 a zn(r) 2 s

n=0

where

-

1/2 b
n " [Te‘ﬁ‘s(‘rﬁ%] j;r'(n+l) a(T) 4T

®
|




Further, irrespective of the validity of this Procedure, or the
existence of the above moments, one may verify that the left menber
of (43) is a solution of (23) provided only that the requisite dif-
ferentiation is justified. Next observe that if we replace A by A -1

in (39), and differentiate, we obtain

(A-r) - o 2(n+l /2 -(n+2)
sgn A . 2rk+7\2)zz 1 = g[?_%mﬁ ¥ :] zm(r)A

Thus, if

1/2 j
_ 2(n+l) / n+2
bn = - [2n+3 o) :I o't b(T) aT,

f [_s_gna(k-rt) - 1]1,(1-) it = Sbn z (r) h‘(n+2), (bk)

7
) Qt2-2r2ﬂ7+ A?) <
n=0

and again, of course, one may verify directly that (Lh) is a solution
of (23).

Next we observe that the effect of the term "r" under the integral
sign in (43) and of the "-1" under the integral sign in (%), insorar
as the physically pertinent quantities X, t are concerned, is simply to
add to x a constant -- the time remains unaffected. So, since any
linear function of r is a solution of (23), we may as well write the

solution arising out of (%3), (L44) in the form

=16~




*® - re
YN = -/ P — (2 + sgn Ab) dT, (45)
- +
(o)

where we have replaced a,b by -a, -b.

From this we obtain

2
2 “x

YV = - (l-r )/ g(a + sgn Zbg 54 0T

o (& -2raT + %)

_ oo (t- Ar)e?

Yr = «72 - orhT 4 7L2) (& + sgn ADb) 4T

o

Thus
w02 2

¢ = LP 2+ senAb) 4o (46)

('c2 - 2ra%t + 12)%

o 3 2 2 3
= _f (P-1) A" -3(B-1)®A-3(B+1)rA + (B+l) © Ab) 4T (L
x [ ('c2 ~oon s 22)% (a + sgnAb) aT (47)

Setting a +b = f(x), a-b = g(tr), we have

-17-




22 £(g)
= L
t (Gf( -2r1¢+x2)"/’ ac (48)

’

x = / ((:’-l) 7\3-3(ﬁ 1) rtA -3(ﬂ+l) rcA+(P+l)c3) £(t) aT (49)
('t - 2rAT + 12)/‘2

(o]

for X > 0, and the same expressions with f replaced by g for

a0
A 4 o. Evidently / f(t) dt must be convergent, and similarly
o

for g(z) if it occurs, since otherwise x would always be infinite.

ot _ ©(-r2) 22 £(7) 4C
2 12/694: (€2 _ 2rAﬂ:+fX2)§2 ?

’ (50)
AT PN l/ 3 £(z) ac;
= = P
ax *(1-r)? A+) - ,5(1+r) (l 2) .2 1
= = 3 fo (@@ - 2raz 4+ 2%)7 £ o

> (51)

ox . X / f1)0ure) ¢ (ﬂ'l)mm) < £(v) ot

o . (c° - 2aT + A°) 7%

The first of these, (50), is of particular use in the sequel.

~18-




7. We want now to examine various properties of the solution

(48), (49). We note first that A = O gives x = -(IB+1)/ o:;'(’C) ac,
o

o0
t Lp /; S £(T) &T . The latter integral may or may not be w

divergent; in the former case A = O corresponds to t = + oo .

At first glance one is tempted to conclude from this that A cannot
change sign, since ) = O gives x and t constant. This argument

is not rigorous, however, because of possible singular behavior of the
solution in the neighborhood of ;\_ = 0. We shall therefore defer
consideration of this matter until we have studied further the properties
of (48), (%9).

Next consider the lines r = + 1. We have

for r

-1, ot o= Wﬂ Es fct)ldqr

for r

1, t

h,efl <2 f('c) a%.

It follows that the only values of A possible at r = 1 are positive,

or such that f(- )\) 0 and.f T’C i( <) dT is convergent. Similarly, at

r = 1, the only possible values of A are negative or such that £(A) =
o2

and T _£(T) 4T is convergent. Since, at each end, A is a constant

o {'C“ 7\‘
multiple of the velocity of the boundary, however, we must expect that

the values of X assumed at each point constitute an interval -- or else

that A is constant , & possibility that we must evidently take account

-19- ‘




of. 1In view of this rather complicated situation, it is worthwhile for
the purposes of orientation to specialize somewhat.

We shall therefore hereafter in this report restrict our
attention to the case that f(T) is everywhere positive or zero. The
more general case will be considered in a later discussion.

To begin, we assume that £f(€) = O for T > m, and prove that
in this case, for small t, the formulae (48), (49) always provide a
solution of the problem before us. Indeed we shall see that for this
case, for t small, x, A\ are always monotone-increasing functions of r
on the interval -1< r £1.

We note first from the formulae (48), (L49), that forA —> oo,
t -0, x> --(,8-1).[0m (1) 4T, the latter integral being necessarily
finite. It is accordingly convenient to think of the motion as starting
et t = O, with A = oo. Next, from (51) we see that g; is always
positive, while 3t/3) is certainly negative for all r < 0, and, if
r >0 for A > rm. Hence on any curve t = const. in the (r, A) plane
which lies above the curve A = Oforr<0, A = rm for r > O,
dX/dr > 0. Further, since at/3) < 0, dx/dr > O also (cf. é Y
above, and recall d¥/ar < 0).

It remains then only to show that there are curves t = const,
extending fromr = =1 tor = 1 in the region under consideration.

To that end, consider any A = ) >m, and the corresponding value of

tatr = -1; t = 1&,5/ ’CA f.f.(,:gd . Now obviously

~-20-




m 2
tl = 4| T R & oty = 1 isa larger value of t, and
o 10 T
on A = Ao, t increases monotonically from t = to atr = -1 to
t = tl atr = 1. Hence on every segment r = To? A >)°, t

must take on the value to once and only once for all-l < ry & 1. This
establishes owr result.
We have now to examine the behavior of this solution as t —> o=

To that end, it will be convenient to assume first that f£(T) vanishes

m 2
for T < € and that f T £(T) aT
€ IA"CP

As an extreme but simple instance of this situation, let us take

is divergent for A = mand X =6

the case that f£(T) = J(1), when we have

o 1 |

N R W X
» (52)
e o e A3 - 3(e-1) o - 3E) PR 4B 1
(1-20A4 A%) 7~ i
This yields
B-2rx- (672 L1y < o, (53)
where
t
g = ]1'3' »
or

2]~




A= r+yr2+(6-2/3—l) s (54)

so0 long as < é 1. Figure 1 shows the curves t = const. in the
(r,M\)-plane for various t £ hp . As is evident from (54), t = k@&
yields the broken line A = Oforr < 0, A= 2r for r >0. To

interpret this let us look at Figs. 2a, Zb. The first shows x as a
function of & for various t < hé’ . The second shows X for t = h{3
and for one greater value (the latter curve is not completed tor = 1
at the top since the value of A there is extremely large). Note that
for all r < 0, so for all X < (p'-;-l)-l, we have x = -((9+l). That is
to say at t = l&ﬁ the value of % at the left-hand end of the mixing
zone drops discontinuously from X = 1 to X = (€+l)-l. Now ob=
serve that one gets t = ’-I-P also for r » O and A\ = 0, and thus
for values of r > 0 and A small but positive, values of t larger, but
as little larger as one pleases, than 4F . Thus for t >k, X drops
to the value zero at the left-hand end of the mixing zone. The boundary
between the two materials is thus reestablished, but only at the expense
of a certain mass of the material to the left having become detached
from its parent substance and mixed into the material to the right.
The subsequent motion of this piece is indicated by the curves
t = 2560/27 in Figs. 1, 2b.

In more complicated situstions, this piece may break up still

further. Consider for example the case

-22.




t 1 1

- - 55
i (1 - 2rA+ Xz)% ¥ (4 - brX + X")y (55

Figs. 3, 4 show the curves t = comst. in the (r,A)- and (r,x)-planes,
respectively. Here, at t = -g (9 we have exactly the same phenomenon
as above, and then at t = 61+F the detached mixed material separates
into two pieces.

There is, furthermore, no a priori reason why a "break-off" of
the kind just indicated cannot occur before one of the sort discussed
in the first example. That is, at three successive values of t,

t o= t, o, t3 the curves t = const. in the (r,A)-plane may look
as in Fig. 5. There may of course also be more than one instance of

this kind. .

With these facts before us, let us return to the general dis-

cussiog, still with £f(7®) 20, £f(Tt) = O, for T >mand T < € ,
€ £(x)
and e -‘ﬁ-‘?— aT diveﬁgegt for A =m or fn‘ . Then, for some
Ao > m, we have clearly < f(’c) dC. = f .i:%.)._ aT.
o [ATT o)

Now let us suppose that f£(€) > O throughout the interval € £ T < m.

Then for every A <-Ao s 't considered as a function of r increases

m
monotonically from a value less than t = ke f <t f£(T) aT at

€
r = =1 to a greater value at r = 1. Thus at exactly one point
it takes on the value to' Further, since at » = O it takes on this

value only at A= 0, t = to’ for r > 0 is a curve extending from

-23-



r = 0, A= Otor = 1, A= Ao' On it, moreover, r is a
single-valued function of A , though not necessarily vice versa. It
remains then to consider the case that f(T) vanishes, either at isolated
points T = Ty? or on intervals. Its zeros at isolated points, more-
over, can only distort the sbove picture if fml’C'- (A |‘3 f(T) 4T
converges. In the latter case, the point Ae= T’o o, r = 1 is a
singular point of themdifferentia.l equation g% aA + g—:— = 0O and
every curve t 3 hé/;"t- ’CO\ -3 £(T) AT goes through it. The con-
figuration there is that shown in Fig. 6. If £(T) venishes on an
interval, the situation is similar, except that all of the curves

t = const. except one are broken like the curve t = in Fig. 5.

t3
Evidently, therefore the zeros of f(T) simply correspond to the ap-
pearance in the mixing zone of intervals at both ends of which r = 1
(x. = 0). If these zeros are isolated, the intervals do not break off,
whereas when £(T) vanishes on an interval, they do.

In consequence, we can conclude, even in the presence of zeros
of f(), that for r >0, t = to is a curve extending fromr = 0O,
A= 0 tor =1, A= )‘o, except for breaks of the kind just
described. Thus the situation is always qualitatively like that in

the simple examples for which graphs have been given.

We now note briefly the situation which occurs if

m
-3
fe 2 I'C‘- m ’ £(T) AT is convergent. We assume that £(T) > O
for T arbitrarily near m; otherwise we could change the value of m.

It is then readily seen that in the right, angle A Lm, r < 1, a1l

=24




*
values of t greater than %

hp/m ’cglfc -m |-3 ffr) aT are
€

*

assumed. Thus all curves t = tl, tl >, t go through r = 1,

A - m, and the right-hand end of the mixing zone having achieved the
*

velocity u = m at t = t  maintains it constant thereafter.

BExcept for this the situation is not different from that just dis-
cussed. Evidently, there i1s a similar possibillty at r = 1,

2 -3
A =€, if/ T |’C‘ m I f(t) 4T is convergent.

Next we consider the case that f£(T) is different from zero in
every neighborhood of T = co. The solution in this case may clearly
be approximated by considering solutions of the sort just discussed,
and sllowing m +to tend to infinity; the evident conclusion is that
all curves t = const. go through the point r = 1, A = oo,
and thus the right-hand end-point of the mixing zone lies always at
X = oo. But of course for values of t sufficiently large, if £(T)
has an interval of zeros which is also bounded away from the origin,
the mixing zone will have a break in it, and the solution exclusive
of this break describes e mixing regime, by itself. 8o solutions of
this sort are not to be neglected.

Next let us drop the condition that £(T) vanish in some
neighborhood of the origin and consider the consequences which can
arise, supposing first that fo mfc"l £(T) 4T is convergent, but of
course that f£(T) 1is different from zero in every neighborhood of the
origin. Observe first that t 4is a uniformly continuous function on

the half-strip -14 r <l -€ , A > 0. Thus it is bounded there, say
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t £ T. BHence all larger values of t must correspogd to curves lying
in the region r > 1 -€. Moreover, at t = LG J_ el £(T) aT , the

value of r at the left-hand end-point of the mixing zone x = X,

changes discontinuously from -1 +to +1, and so &K drops discontinu-

oucly from 1 to O at that time and place, x = xo(t) remaining

[ =]

constant and equal to -(‘54- 1) [ f(t) 4T , thereafter. The
structure of the solution as -t increases, depends of course on the

zero of £(T).

o

Now let us assume that [ (o £(T) 4T is divergent at’C = 0,

and consider any value of t > O. Corresponding to this value of t

oo
we find a unique A =10 on r = -1, t = h‘ﬁ’[’C' fg;cg3 ac,
(T+A)

and by a type of argument already used, for each r on -1 < r ¢ O, one

and only one value of A > Ao corresponding to this value of t, and

thus a continuous arc fromr = -1 tor = O corresponding to this
value of t. Further, it crosses r = O with 4aA/ar > 0.
The continuation of this curve cannot cross the liner = O

again for O (S A £0o3 except possibly at A= 0, and cannot inter-

oo 2
sect r = 1 except at a point A where[ Lﬁf}— dT is con-

(A-1)’
vergent, cannot intersect A = O except at r = O, nor A = oo
except at r = 1. Moreover, at every point with 0 < r <« 1, 0<A <oo,

r is an analytic function of A. Finally the possibility that it

crosses r = O at A= 0 may be ruled out, because this would
imply the existence of a point at which -g—ra = 0, so gic_'- = 0O, and

this cannot occur. Thus negative values of A do not occur for any of

26~




these solutions, and the curves t = const. all crossr = 1, al-
though this intersection may lie at >\ = oo, Tt cannot, however, in
the case before us lie at A = 0, since this corresponds to t =oo0,
There may of course be additional arcs belonging to the value of ¢
under consideration; these will have both end points onr = 1, and
correspond to the motion of portions of the mixture which have broken
loose in the manner already indicated above. '

It is evident from the sbove discussion that for any given €,

we can choose T so large that all curves t = const. 3T lie in
the right-angled strip bounded by A = 0, A= € , r = 1-¢,
r = 1l. Further, we can also show that forr«< 1 - €, x - X,
oo
vhere x = = -(‘5+ 1) / f(<) @T, tends to zero for A —>» 0 Thus
(o}

the width in space of the zone in which r <« 1 - €, vhere
X > 6/2(9 , tends to zero as t —>» oo . To prove this, we have
simply to show the uniform continuity of x as a function ) at

XA = 0, for r<1l-€. Fromthe formula (49), we see that it is
A K 23K 51y

dc,
(@ - 2rAT +A2)3/2

sufficient to show that each of the integrals

k = 1, 2, 3 tends to zero uniformly in r forrcl-e,as)—-—? O.

One readily establishes the inequsality

o < () @
@ - 2rac + A?) 3 o (T AP

so that the problem reduces to the consideration of the integrals
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P~ ]
3-k
[ A £(cT) atT.

(T + A)3
For k = 1, we have
/ £(T) aT= ——— f(T) 4T -/ f(c) atT.
(fc:+7\)3 (7« +)?

Since both integrals on the right have the limit X s 88 A—> O, the

one on the left must vanish. Now in the same way, we can show that

AT

—— f(T) 4T has the limit zero, whence, with the identity
(T+2)

A2t . Act o
(T + 7\)3 (T + ?\)3 (T+ A)a

=22
we conclude that —_— f(T) 4T

L (T +))3

has the limit zero as ) ~>» 0. Finally

A3 X 2\ 2¢ A2

= - —— e—— and

M) AT (N (A+)3

o

_A_ T (T
T £(T) 4T = A £(T) aT - /;ﬁ ac,
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1im T A3

A5 0 )3 £f(T) aTt = o.

o (A+’C

We thus have the qualitative result that as t — oo, the
width of the region where there is appreciable mixing tends to zero,
although small amounts of the material originally to the left may
penetrate arbitrarily far into the material to the right. In this

b'd
connection it is of some interest to calculate ‘/x' ltxdx as a

o
(x,t)

function of time. From equation (2), we observe that f (0<dx)- wdt )
X ,t
0’ o

is independent of its path. Integrating by parts, we obtain for

65w)
this integral wt + ax - X ( )(x dx -t dw) = X - v ,w) +
10

¥(1,0), where y 1s the function defined by equation 6} Recalling
y = (1 + (‘B—l)@yf s we have

X

1
x “dx = -Xo + F V (-l, )O) "V(l, )l),
o
where X = and Al are the values of A at r = -1, r = 1

corresponding to the value of t 1in question. The above has been
derived under the implicit assumption of no breaks in the solution,
but it is easy to verify that it is correct even in the presence of
such breaks if 31 is the maximm A on r = 1 corresponding to

the value of t in question. In consequence of this, one gets
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/. K
g} Xdx = - x = (/ﬁ-l) / £(T) aT

o]

fo ]
Since in the limit ¢t —poo , -x —> (/ﬁ+ 1) / £(T) AT , we
o

have
X 1 o
(o]

lim
t —~p oo
[}

¢

This completes our discussion of the case f(T) 2, 0. It will
be observed that f(T) & O clearly describes a regime of "unmixing"
since it amounts simply to reversing the sense of time and inter-
changing left and right in the solutions we have discussed. Since the
general case can be considered as a superposition in the (A , r)-space
of a mixing and an unmixing, there do not appear to be any sample
criteria for distinguishing those £(T) which change sign, which pro-
vide mixing regimes over some interval of time. In a subsequent re-
port we shall take this subject up further; here we conclude with two
remarks. First, the assertion made sbove concerning the "stability"
of the solutions with f(€) 2 O remains valid provided simply that
£(T) 1is sbsolutely integrable at the origin. Second, a completely
new phenomenon appears when we come to f£(T) which change sign --
namely, solutions in which «, wu, v change discontinuously et
one of the boundaries, not just at one instant as in the examples above,

but throughout an interval of time. That is, at the left-hand boundary,
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say, K may drop from the value 1 to a value X which is a function
of time, u increasing at the same instant from zero to a value which
also varies in time. This is, therefore, a sort of shock mixing. It
does not, however, require any special equations to describe it; be-
cauéz the equation governing the motion is elliptic, the nature of
discontinuities which can develop in a solution is controlled by the
equation itself. This phenomenon appears whenever +t( r, A ) has a

relative maximm on r = -1 or r = 1, end will be discussed in

more detall in Part II of this report.
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